Coupled ion binding and structural transitions along the transport cycle of glutamate transporters

نویسندگان

  • Grégory Verdon
  • SeCheol Oh
  • Ryan N Serio
  • Olga Boudker
چکیده

Membrane transporters that clear the neurotransmitter glutamate from synapses are driven by symport of sodium ions and counter-transport of a potassium ion. Previous crystal structures of a homologous archaeal sodium and aspartate symporter showed that a dedicated transport domain carries the substrate and ions across the membrane. Here, we report new crystal structures of this homologue in ligand-free and ions-only bound outward- and inward-facing conformations. We show that after ligand release, the apo transport domain adopts a compact and occluded conformation that can traverse the membrane, completing the transport cycle. Sodium binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. Furthermore, we describe a new cation-binding site ideally suited to bind a counter-transported ion. We suggest that potassium binding at this site stabilizes the translocation-competent conformation of the unloaded transport domain in mammalian homologues.DOI: http://dx.doi.org/10.7554/eLife.02283.001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Position of the Third Na+ Site in the Aspartate Transporter GltPh and the Human Glutamate Transporter, EAAT1

Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na(+) ions, one H(+) and the counter-transport of one K(+) ion. Transport by an archaeal homologue of the human glutamate transporters, Glt(Ph), whose three dimensional structure is known is also coupled to three Na(+) ions but only two Na(+) ion binding sites have been observed in the c...

متن کامل

Interactions of alkali cations with glutamate transporters

The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interf...

متن کامل

Early Intermediates in the Transport Cycle of the Neuronal Excitatory Amino Acid Carrier Eaac1

Electrogenic glutamate transport by the excitatory amino acid carrier 1 (EAAC1) is associated with multiple charge movements across the membrane that take place on time scales ranging from microseconds to milliseconds. The molecular nature of these charge movements is poorly understood at present and, therefore, was studied in this report in detail by using the technique of laser-pulse photolys...

متن کامل

New views of glutamate transporter structure and function: advances and challenges.

Neuronal and glial glutamate transporters limit the action of excitatory amino acids after their release during synaptic transmission. Recent structural and functional investigations have revealed much about the transport and conducting mechanisms of members of the sodium-coupled symporter family responsible for glutamate clearance in the nervous system. In this review we summarize emerging vie...

متن کامل

Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model.

Excitatory amino acid transporters (EAATs) remove glutamate from synapses. They maintain an efficient synaptic transmission and prevent glutamate from reaching neurotoxic levels. Glutamate transporters couple the uptake of one glutamate to the cotransport of three sodium ions and one proton and the countertransport of one potassium ion. The molecular mechanism for this coupled uptake of glutama...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014